1,2-Di-tert-butyldiaziridine

Remir G. Kostyanovsky,*a Vadim A. Korneev, Ivan I. Chervin, Vladimir N. Voznesensky, Yurii V. Puzanov and Paul Rademacher

^a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156

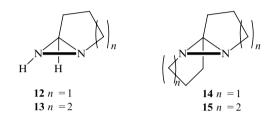
1.2-Di-tert-butyldiaziridine 1 has been synthesized for the first time and its ¹H and ¹³C NMR spectra studied in comparison with model diaziridines 8-10. Its photoelectron and mass spectra have been measured and its structure optimized by semiempirical and ab initio calculations; considerable steric deformation of the CH₂ ring fragment and mutual approach of tert-butyl groups is

The preparation of 1,2-di-tert-butyldiaziridine was earlier reported to be unsuccessful due to steric hindrance. So, although 1,2-di-tert-alkyldiaziridines are very attractive objects for studying sterically-hindered nitrogen inversion, any attempt to synthesise them faced a psychological barrier. However, we succeeded in our efforts to synthesise diaziridine 1 in > 6% yield by the Schmitz method 2 using a reaction of N-methylene-tert-butylamine 2 with N-chloro-tert-butylamine 3, generated under the action of tert-butylhypochlorite 4 on tert-butylamine 5, Scheme 1. The latter was used as a base to trap HCl.[†]

$$Bu^{t}N=CH_{2} + 2Bu^{t}NH_{2} + Bu^{t}OCl \xrightarrow{i} Bu^{t} \xrightarrow{H} N$$
2 5 4

Scheme 1 Conditions: i, in Et₂O, 5 days at 20 °C.

According to NMR and chromato-mass spectrometry (GC, phase SE-30) a crude product was contaminated with compounds 3-5, Bu^tNCl₂ 6 and Bu^tOH 7. After distillation upon molten Na and chromatography on silica gel (eluent nhexane) an analytically pure sample of 1 was isolated and


characterized by spectroscopic data. ‡ Model diaziridines 8^3 and 9, 10^1 were synthesized for comparative investigations.

$$Bu^{t} \stackrel{H_{b}}{\underset{H_{a}}{\bigvee}} \stackrel{H_{c}}{\underset{N}{\bigvee}} \stackrel{H}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{R}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} \stackrel{R}{\underset{N}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{R}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{R}{\underset{N}} \stackrel{R}{\underset{N}} \stackrel{R}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{N}}}} \stackrel{R}{\underset{N}} \stackrel{N}{\underset{N}} \stackrel{R}{\underset{N}} \stackrel{R}{\underset{N}} \stackrel{R}{\underset{N}} \stackrel{R}{\underset{N}} \stackrel{N}{\underset{N}} \stackrel{N}{\underset{N}}{\underset{N}} \stackrel{R}{\underset{N}}{\underset{N}} \stackrel{R}{\underset{N}}{\underset{N}} \stackrel{N}{\underset{N}}{\underset{N$$

Besides compound 8, tert-butylaminoacetonitrile 11, erroneously described earlier as 2-tert-butyl-2.4-diazabicyclo[1.1.0]butane,³ was isolated by the same method ³ and identified in accordance with the reported data on an analogous compound.

The high-field shift of the ¹³C signal of the ring carbon observed for 1 and 8 was considerably stronger compared to

all known data on trans-diaziridines^{5–10} (Table 1). This can be explained by the contraction of the HCH (α) angle due to the steric effect of the bulk N-substituents, as in the case of transition from three- to four-membered 1,3-bridges in bicyclic 12, 13⁷ and tricyclic 14, 15 *trans*-diaziridines^{11,12} (Table 1).

Table 1 ¹³C NMR chemical shifts of the diaziridine ring carbon.

Compound	1	8	9	10	12	13	14	15
δ^{-13} C/ppm	41.9	41.6	55.8	57.7	65.7	55.9	78.7	58.6

The above interpretation is also confirmed by the fact that the contraction of α is accompanied by a dihedral angle change that results in a decrease of ³J, the virtual spin

[‡] Characteristics of the compounds: yield, %; bp, °C (Torr); spectroscopic data: ¹H NMR [400 MHz, CDCl₃/CCl₄ (1:1)]; MHz, CDCl₃), δ /ppm, J and Δv /Hz, standard TMS; mass spectro-

metry (electron impact, 70 eV), m/z (relative intensity, %). For 1: 6.2; 42 (18); ¹H: 0.96 (s, Me₃C), 2.29 (s, NCH₂N); ¹³C: 26.04 (q hept, Me, ¹J 125.7, ³J 4.4), 41.9 (t, NCH₂N, ¹J 172.2), 54.40 (dec t, CMe₃, ²J = ³J = 3.6); 156 M⁺ (6.4), 141 (0.8), 100 (13.8), 85

(dec t, CMe₃, J = J = 3.0); 156 M (6.4), 141 (0.8), 100 (13.8), 85 (11.7), 70 (10.0), 57 (100), 45 (10.0), 44 (9.0), 41 (10.0), 29 (10.0). For **2**: 65; 63–65 (760); 1 H: 1.19 (s, Me₃C), 7.32 (q, CH₂, AB, $\Delta \nu_{AB}$ 27.50, $^{2}J_{AB}$ –15.9). For **3**: 1 H: 1.21 (s, Me₃C); 107 M⁺ (8.6), 92 (97), 57 (100), 56

(25.8), 42 (35.5), 41 (47.3), 39 (11), 29 (36.6).

For **4**: ¹H: 1.33 (s, Me₃C).

For 5: ¹H: 1.09 (s, Me₃C).

For **6**: ¹H: 1.22 (s, Me₃C); 141 M⁺ (3.2), 126 (4.3), 106 (1), 92 (6.5), 71 (4.3), 57 (100), 41 (34.4), 29 (30).

(6.5), 71 (4.3), 57 (100), 41 (34.4), 29 (30). For **7**: 1 H: 1.23 (s, Me₃C). For **8**: 15; 30 (18); 1 H: 1.00 (s, Me₃C), 1.64 (br m., H_cN), 2.51 (dd, H_a, 2 J_{ab} 4.9, 3 J_{ac} 7.0), 2.79 (dd, H_b, 3 J_{bc} 7.6); 13 C: 25.08 (q hept, Me, 1 J 125.7, 3 J 4.4), 41.6 (ddd, NCH₂N, 1 J_{CHa} 173.7, 1 J_{CHb} 175.8, 2 J_{CHc} 3.6), 54.83 (m, CMe₃, 2 J_{CH} = 3 J_{CHa} = 3 J_{CHb} = 3 J_{CHc} = 3.6). For **9**: 70; 37 (0.1); 1 H: 0.92 (t, Me, 3 J 7.0), 1.38 (qt, CH₂Me, 3 J 7.0 and 7.3), 1.57 (tdd, CH₂Et, 3 J 7.3, 7.0 and 7.9), 2.35 (m, ABX₂, 4 Av_{AB}, 103.2, 2 J -11.9, 3 J_{AX} 7.0, 3 J_{BX} 7.9), 2.43 (s, NCH₂N); 13 C: 13.16 (qt, Me, 1 J 124.9, 2 J 3.6), 19.69 (tqt, CH₂Me, 1 J 125.0, 2 J 2.9), 30.04 (ttt, CH₂Et, 1 J 127.9, 2 J 5.8 and 2.9), 55.77 (t quint, NCH₂N, 1 J 172.9, 3 J \approx 2.9), 60.17 (tt, CH₂N, 1 J 135.2, 2 J 4.4). For **10**: 52: 50 (760); 1 H: 2.36 (s, CH₂), 2.41 (s, Me); 13 C: 46.46 (qt,

 $J_1/2.9$, $J_1 \approx 2.9$), 60.17 (tt, CH₂N, $J_135.2$, $J_24.4$). For 10: 52; 50 (760); $J_1 = 2.36$ (s, CH₂), 2.41 (s, Me); $J_2 = 2.46$ (qt, Me, $J_2 = 2.46$ (s), 57.7 (t hept, CH₂, $J_2 = 2.46$ (s), 3.5 (s, CH₂); $J_2 = 2.46$ (qt, Me, $J_2 = 2.46$ (s), 3.5 (s, CH₂); $J_2 = 2.46$ (qt, Me₃C, $J_2 = 2.46$ (s), 3.5 (s, CH₂); $J_2 = 2.46$ (q hept, Me₃C, $J_2 = 2.46$ (s), 3.6 (t, CH₂, $J_2 = 2.46$ (dec, CMe₃, $J_2 = 2.46$ (s), 119.3 (t, CN, $J_2 = 2.46$ (c), 3.6 (s), 119.3 (t, CN, $J_2 = 2.46$ (dec, CMe₃, $J_2 = 2.46$ (dec, CMe₃), 2.7 (d

Institute of Organic Chemistry, University of Essen, D-45177 Essen, Germany. Fax: +49 201 183 3082

 $^{^{\}dagger}$ Compound 1 was obtained from 15.3 g (0.18 mol) of 2, 6.3 g (0.36 mol) of 5 and 19.5 g (0.18 mol) of 4 in 60 ml absolute Et₂O. The mixture was kept for 5 days at 20°C and the resulting precipitate was filtered off. The filtrate was kept for 1 day at 20 °C and the precipitate was again filtered off. The resulting solution was heated for 2 h under granulated KOH and distilled under CaH2. The crude 1 (3 g, 10.7%) bp 45°C (25 torr) was obtained. After purification by distillation under molten Na and by chromatography on silica (eluent n-hexane) analytically pure 1 was isolated, yield 1.76 g (6.2%), bp 42 °C (18 torr).

Table 2 Geometry of molecule 1 optimized by PM3 and 3-21G

	PM3	3-21G
Bond lengths (A)		
N-N	1.500	1.503
N-C (ring)	1.476	1.466
C-H (ring)	1.103	1.069
N-C (Bu ^t)	1.500	1.494
C-C (Bu ^t)	1.532-1.538	1.538
C-H (Bu ^t)	1.098-1.099	1.081-1.085
Valence angles (°)		
N-N-C	59.5	59.1
N-C-N	61.1	61.7
Η–С–Η (α)	110.9	115.8
Angle between HCH and ring planes	84.6	84.6
Sum of valence angles at N atom	302.1	293.1
Out-of-plane angle of N–C(Bu ^t) bond	53.1	58.2
Dihedral angles (°)		
$C-N-N-C(\delta)$	132.8^{a}	124.2
C-N-C-H (cis)	1.9	17.3
C-N-C-H (trans)	139.6	162.8
Contact (A):		
(ring) C–H····H (Bu ^t)	2.24	2.18

^a From AM1¹³ calculations 136°.

coupling constant of the ¹³CMe₃ carbon with ring protons, observed for 1 in comparison with 10, ${}^{3}J_{\text{obs}} = 3.6$ and 5.1, respectively. In the case of **8** the contraction of α is displayed by a convergence of the values of spin coupling constants ${}^{3}J_{ac}$ and ${}^{3}J_{bc}$ and in the equality of the three ${}^{3}J_{CH}$ constants of carbon CMe3 with the ring protons.

From semi-empirical data and ab initio calculations on 1 (Table 2) the angle α is 115.8° while estimation by the correlation of α and δ ^{13}C 11,12 gives a value of \approx 105°. In comparison, for 10 from electron diffraction (ED) data14 the value of this angle is considerably higher, $\alpha = 121(6)^{\circ}$.

The calculations predict an asymmetric deformation of the CH₂ ring fragment (the angle between HCH and ring planes < 90°) due to the short contacts H···H between CH₂ and Bu^t groups (Table 2). The high strain in molecule 1 caused by this is manifested in the fact that its main fragmentation route under electron impact[†] include cleavage of N-Bu^t bonds:

$$Me_3C^+ \leftarrow M^+ \xrightarrow{-CH_2=CMe_2} m/z \ 100 \xrightarrow{-CH_2=CMe_2} m/z \ 144$$
 $m/z \ 57 \qquad m/z \ 156 \qquad (13.8\%) \qquad (9\%)$
 $(100\%) \qquad (6.4\%)$

It follows from the calculations (Table 2) that the abovementioned nonbonded interaction in molecule 1 is partly compensated by the approach of But groups to each other, as shown in the decrease in out-of-plane angles of N-C(Bu^t) bonds and dihedral angle CNNC (δ) (Table 2). For **10** from the ED data¹⁴ these angles are equal to 64.1 and 151.9°,

Table 3 Vertical ionization potentials IP (eV) and calculated MO energies ε (eV) of 1,2-di-tert-butyldiaziridine 1.

IP (exp.)	IP (calc.) ^a	-ε (AM1)	Orbital
8.65	8.75	9.65	n ⁺ _{NN}
9.57	9.90	10.64	n- _{NN}
10.60	10.76	11.38	σ
	11.09	11.66	σ
	11.15	11.72	σ

^a Outer valence Green's function (AM1). ¹³

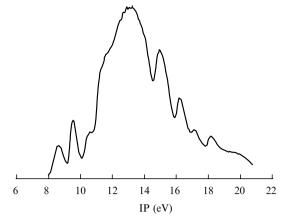


Figure 1 Photoelectron spectrum of diaziridine 1 (measured as described in ref. 18).

respectively. The angle (δ) is connected with the dihedral angle φ between the nitrogen electron lone pairs. Angle φ is determined from photoelectron spectroscopy (PES) data, from these data for $10 \varphi = 102^{\circ}$. Based on our PES investigations of 1 (Table 3, Figure 1) the dihedral angle $\varphi \approx 110^{\circ}$ can be estimated from the two n_N ionizations. This angle is close to AM1 calculated for 1 $\varphi = 115^{\circ}$.

The remarkable point is that 1 has a lower first vertical IP, compared to all previously studied diaziridines, 15-18 with the exception of 15 (the first two IPs: 8.51, 9.10 eV).¹⁷

This work was accomplished with financial support from INTAS (grant no. 94-2839), the International Science Foundation (grant nos. MCO 000 and MCO 300) and the Russian Foundation for Basic Research (grant no. 94-03-08730).

References

- R. Ohme, E. Schmitz and P. Dolge, Chem. Ber., 1966, 99, 2104.
- E. Schmitz and K. Schinkowski, Chem. Ber., 1964, 97, 49.
- A. A. Dudinskaya, L. I. Khmelnitski, I. D. Petrova, Baryshnikova and S. S. Novikov, Tetrahedron, 1971, 27, 4053.
- A. H. Lawrence, D. R. Arnold, J. B. Stothers P. Lapouyade, *Tetrahedron Lett.*, 1972, 2025. R. Radeglia, *J. Prakt. Chem.*, 1976, **318**, 871.
- M. Mintas and A. Mannschreck, Tetrahedron, 1981, 37, 867.
- G. V. Shustov, S. N. Denisenko, N. L. Asfandiarov, L. R. Khusnutdinova and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1824 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 1655).
- P. B. Carboni, L. Toupet and R. Carrie, Tetrahedron, 1987, 43, 2293
- S. N. Denisenko, E. Pasch and G. Kaupp, Angew. Chem., Int. Ed. Engl., 1989, 28, 1381.
- V. V. Kuznetsov, N. N. Makhova, Yu. A. Strelenko and L. I. Khmelnitski, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 2861 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2496).
- 11 G. Kaupp, S. N. Denisenko, G. V. Shustov and Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2496 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2173).
- 12 G. Kaupp and S. N. Denisenko, Magn. Reson. Chem., 1992, 30, 637.
- 13 D. Danovich, Y. Apeloig and S. Shaik, J. Chem. Soc., Perkin Trans. 2, 1991, 1865.
- V. S. Mastryukov, O. V. Dorofeeva, and A. V. Golubinskii, J. Mol. Struct., 1976, 32, 161.
- 15 P. Rademacher and H. Koopmann, Chem. Ber., 1975, 108, 1557.
- 16 E. Haselbach, A. Mannschreck and W. Seitz, Helv. Chim. Acta, 1973, **56**, 1614.
- S. N. Denisenko, G. Kaupp, A. J. Bittner and P. Rademacher, J. Mol. Struct., 1990, 240, 305.
- S. N. Denisenko, P. Rademacher, K. Kowski, G. V. Shustov and R. G. Kostyanovsky, J. Mol. Struct., 1995, 350, 49.

Received: Moscow, 4th October 1995 Cambridge, 2nd November 1995; Com. 5/06680H